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On the attenuation of long gravity waves by short 
breaking waves 
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(Received 14 January 1963) 

It is shown that when short wind-generated gravity waves lose energy by 
breaking (or other dissipative processes) near the crests of longer waves, the loss 
is supplied partly by the longer wave because of the second-order radiation-stress 
interaction. This process is discussed in detail analytically and also from energy 
considerations with use of the concept of radiation stress. The results are applied 
to the attenuation of swell by a local wind-generated wave field, and it is shown 
that the rate of decrease of the amplitude a" of the swell is constant and given by 

where pa, pw are the air and water densities, u* is the friction velocity of the wind 
in the interaction zone, and c", c are the phase velocities of the swell and the 
component of the locally generated field at  the spectral maximum. 

1. Introduction 
This paper is concerned with the dynamical consequences of the breaking 

of short-gravity waves near the crests of longer waves. In  the open sea, an ob- 
server can discern wave breaking of at least two types. One, with which we will 
not be concerned, may occur when the crests of two low-frequency waves 
intersect or overtake each other; this is characterized by a tumbling of the water 
and the vigorous entrainment of air bubbles, giving rise to the name whitecaps 
or white horses. The second kind occurs when short wind-generated gravity 
waves are overtaken by a much longer wave. Near the crests of the long wave, 
the energy density of the short wave is increased partly by the contraction 
associated with the long wave and partly by the interaction that Longuet- 
Higgins & Stewart (1960) showed could be described in terms of a radiation 
stress. If the short waves are receiving energy from the wind, their amplitude 
will grow until at  the long wave crests they will approach their limiting con- 
figuration allowed by the stability requirements of the surface. The short-wave 
crests become sharp, and the waves may break in the usual sense, or splash when 
different short waves interfere. Another possibility is that, as sharp crests appear 
on the short waves, capillary waves develop on the forward face resulting, as 
Longuet-Higgins ( 1963) recently showed, in a much enhanced dissipation 
IocalIy from the short waves. In  any event, energy is lost from the short waves 
near the crests of the long ones. It will be shown later than this energy lost from 
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the short waves is supplied not only by the wind but also, through the inter- 
action represented by the radiation stress, by the longer waves. As a consequence, 
the ‘breaking’ of short waves at the crest of longer ones (using this term to in- 
clude any of the energy-loss mechanisms) results in an energy loss from the long 
waves and, unless the wind can make up this loss, in an attenuation. 

This process then represents a way in which energy can be extracted from long 
waves by interaction with short ones. The process is irreversible and the energy is 
lost from the wave field: it  does not represent a genuine energy flux from one 
component of the wave field to another. It is known (Phillips 1960; Hasselmann 
1962,1963) that energy transfer of the latter kind occurs only at  the third order 
in a Stokes expansion, whereas the radiation stresses are second-order pheno- 
mena. In  the absence of short-wave ‘breaking’ (in this sense) the effect of the 
radiation stresses associated with the interaction is to cause the short-wave 
energy density to oscillate with the frequency of the long wave. There is no net 
energy transfer, but only a continual oscillatory interchange. If the short waves 
lose energy where their energy density is highest (at the long wave crests), part 
of the energy lost is that which has been ‘borrowed’ from the long waves, so 
that as time goes on, they will attenuate. 

The dynamical consequences of this are first discussed by a direct study of the 
non-linear interaction between the two wave trains. The results are interpreted 
physically in terms of the radiation-stress concept and applied to the case of 
the attenuation of swell passing through a local wind-generated sea. 

2. Analysis of the interaction 
If waves are generated on the surface of a real fluid by normal stress fluctua- 

tions, it  is known that a second-order vorticity diffuses downwards from the 
free surface. Although this vorticity distribution is of crucial importance in 
questions of mass transport (Longuet-Higgins 1953)) it does not affect the 
dynamics of the wave motion to second order. We can consequently suppose 
the wave motion to be irrotational, so that the velocity fluid is given by 

u = V$ and V2$ = 0. (2.1) 

The boundary conditions to be satisfied on the free surface z = <(x, t )  are 

( 2 . 2 )  

The first of these is the kinematic boundary condition, and the second the con- 
dition of continuity of pressure across the free surface, where p,(x, t) represents 
the pressure distribution on the surface set up by the air flow over the water. 
In  addition, in deep water we have the condition that $ + 0 as z -+ - 00. 

Now, the turbulent wind flow over a single wave train moving in the positive 
x-direction sets up a component of the pressure distribution in phase with the 
wave slope that can be represented as 

PI(%, t )  = ypcwax,  (2.4) 



The attenuation of long gravity waves 323 

where c is the phase speed of the waves and p the water density. The numerical 
value of y is determined by the velocity profile in the wind, and analyses of the 
generation of waves by the instability mechanism (Miles 1957, 1960; Brooke 
Benjamin 1959; Lighthill 1962) are concerned largely with estimating y. It is 
seen below that (ny)-l represents the number of wave periods required for the 
wave amplitude to increase by a factor e under the action of the instability and 
in the absence of any damping. The numerical value of y is of order for the 
short-gravity wave components of a wind-generated wave field (those for which 
c - u*, the wind friction velocity), but for the longer components y is very much 
less. For example, Phillips & Katz (1961) showed that y - when c N 8u,. 
In  the present problem, we are interested in the interaction between short waves 
and much longer ones; the growth of the long waves over one wave period is very 
small whereas over the same time interval the short-waves can grow significantly 
since this represents a considerable number of short wave periods and also be- 
cause y is numerically larger for the short waves. Consequently, it  is reasonable 
to neglect the direct wind action on the longer waves and to consider the inter- 
action between growing short waves and long waves of fixed amplitude. 

It should be remembered that the wind flow over the water also induces a 
pressure variation in phase with the surface displacement which is numerically 
much larger than that given by (2.4). However, this component has a negligible 
influence on the energy balance of the wave system and, in all save the most 
extreme circumstances the only effect of this component of the pressure dis- 
tribution is to produce an insignificant modification to the phase speed of the 
waves. The surface-pressure distribution po in (2.3) can accordingly be taken as 
pl given by (2.4). 

The free surface-boundary conditions can be expressed as an expansion about 
the mean surface level, thus 

Also, the velocity potential q5 and the surface displacement ( can be expanded 
in terms of an ordering parameter e, of the order of the wave slope. Thus 

The first-order velocity potential q51 satisfies (2.1), together with the linearized 
forms of the boundary conditions (2.5) and (2.6) obtained by neglecting terms of 
the second and higher orders in E .  Therefore if (2.4) is substituted for po, we have 
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On differentiation of the second of these conditions with respect to t and sub- 
stitution from the first, we have 

when z = 0. The solution subject to  this boundary condition that represents 
two wave components can be expressed as 

q51 = B'exp{k'z}exp{i(lc'x-cr't)}+ B"exp{k"x}exp{i(k"x-d't)}, (2.10) 

where the (complex) wave-numbers and frequencies are related by 

(2.11) 

where, in the present situation, k' 9 k" and y represents the growth rate of the 
shorter waves. 

Now if the shorter waves are losing energy at the crests of the larger ones 
through the development of an instability with consequent splashing or breaking, 
the amplitude of the short waves leaving the crest will be less than those arriving 
at it. The growth of the shorter waves takes place from one crest to the next, 
and the short-wave amplitude is constant at points moving with the phase 
velocity c" of the long waves. When x = ~ " t ,  then, (k'x - d t )  is purely real, or 

Im (k'c" - d) = 0. (2.12) 

The short-wave part of the solution (2.10) is then only piecewise valid, that is, 
in finite stretches between one long-wave crest and the next. If k' = k i + i k ;  
(where k; -g k& since y 4 l), and likewise g' = gj+igi, it can be shown after a 
little algebra that (3.12) requires 

(2.13) 

where c' = cri/ki is the phase velocity of the shorter waves. The first-order 
velocity potential can thus be represented in real form by 

= A' exp {k'z - kl (x  - d't)} cos {ki 1: - cr& t + ki z }  

+ A" exp (k"z) cos (k"x - ~ ' ' t ) ,  (2.14) 

is given by 

(2.15) 

(2.16) 

the small phase differenced being a consequence of the rate of short-wave growth. 
From these expressions, the second approximation can be constructed readily 

using the technique given by Longuet-Higgins & Stewart (1960). From (2.1) 

V2q5, = 0, (2.17) 

where cr" and k" are real. The first-order surface displacement 
(2.8) as 

= a' exp { - k;(x - c"t)} sin ( k j x  - ait + 6')  +."sin (k"x - d ' t ) ,  

1 where a' = -A'k&/g&, a" = -A"k"/g", 

6' = - y(c" - c')/(2c" - c') ,  
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and from (2.5) and (2.6), when z = 0,  

(2.18) 

Elimination off,  from these two gives after a little algebra that 

When the first-order solutions (2.14) and (2.15) are substituted into the right- 
hand side of (2.19) it is found that the last group of terms has the same form as 
the first term, but is smaller by a factor of order y, so that (2.19) assumes the form 

{ + g @) = - ~A'A!'I~;  k"(a; - at') (1 - O(y)}eO sin { (k ;  - V )  x - (a; - a") t}, 
a t 2  at z=o 

(2.20) 
where B = - kl (z  - c"t). (2.21) 

Equation (2.17) and the boundary condition (2.20) are satisfied by 

A ' A  " ki k" 
aft 

q52 = - -__- (1 + O(y))  exp {(k: - k") z + B}  sin { (k:  - k") x - (a; - 0- ' I )  t}. 

(2.22) 
The free surface displacement is given by 

This expression is similar in form to the one given by Longuet-Higgins & 
Stewart (1960) for the interaction between two steady wave trains, except that 
the local first-order short-wave amplitude alee replaces their constant value a'. 
This is not at all unexpected and indeed might almost have been written down 
ab initio, though the development above gives a clear idea of the approximations 
involved. The first two terms clearly represent the second-order distortion of 
the original two wave components and the third their mutual interaction with 
which we are concerned. 

The short wave, under the influence of the wind and the longer wave, therefore 
assumes the form 

5' = a' ee sin x' - a'a'' ee {k' cos x' cos x" - k" sin x' sin x"} 
= a' ee sin x'{ 1 + ankK sin x"} - a' eo cos x'{k'af' cos x"}, (2.34) 
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which represents a wave with local wave-number 

k = k'( 1 + k"a" sin x"), 
a = a' e0 ( 1 + k"a" sin x"). and local amplitude 

( 2 . 2 5 )  
( 2 . 2 6 )  

These formal solutions represent the development to second order of the short 
waves for all x and t .  At the long-wave crests, the amplitude of the short waves 
becomes large and splashing or breaking may occur. These solutions are then of 
course invalid locally, though they will give a good approximation over the rest 
of t'he long-wave cycle. If the breaking zone is short and occupies only a small 
fraction of a wavelength near the long-wave crest, the solutions are valid over 
most of the cycle, from the end of the breaking zone on one crest to the beginning 
of this zone on the next. 

The distance between the long-wave crests is specified by a change of 2n in 
x", or from (2.21), by a change of - 2nki/k" in 0. Thus, if 

( 2 . 2 7 )  

the increase in short-wave amplitude from one crest to the next is 

6a = 2nI'a'( 1 + k"a") ( 2 . 2 8 )  

to the first order in I', or equivalently, in y times the number of short waves 
between successive crests of the long ones. 

This result, ( 2 . 2 8 ) ,  seems quite significant. It shows that the increase in 
short-wave amplitude from one crest to the next is the same as i f  the initial 
amplitude were a'( 1 + k"a") and the long waves were not present. But the local 
wave amplitude in the troughs is diminished by the divergence of the flow in the 
long waves, with a consequently diminished rate of growth under the wind action, 
yet the final wave amplitude is the same as it would have been if the initial wave 
amplitude had steadily increased under the wind action. In  terms of the short- 
wave energy, this suggests that the increase in short-wave energy over the cycle 
(and, with local breaking of this kind, the dissipation at  the crests of the long 
waves) is only partially the result of the wind action, and there must also be an 
energy loss from the long waves. 

This, in fact, can be shown directly from these solutions. A t  the long-wave 
crests, the short waves experience a decrease in the effective gravitational field 
because of the downwards acceleration of the free surface as the long waves pass. 
Longuet-Higgins & Stewart (1960) have shown that the local wave energy density 
is given in terms of the local amplitude a by 

(2.29) 

where f is the (upwards) acceleration of the free surface. The long waves produce 
an acceleration f = - a"k"g at the crests, so that 

R = 4pga2( 1 - 4a"k"). ( 2 . 3 0 )  
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If  a, = a’( 1 + k’la’’) is the short-wave amplitude at the first crest just after 
the breaking zone and.Eo is the corresponding short-wave energy density, then 
the change in energy density between this point and a point just before the 
breaking zone at the next long-wave crest is given by 

from (2.28). But from (2.30),  

(2.31) 

(2.32) 

where E = ipga‘2 is the mean short-wave energy density. Thus 

w = 4nr~(i + ~ k w ) .  (2.33) 

On the other hand, the energy supplied from the wind to a wave packet of the 
short waves is given by 

c%, = / o T P f d t ,  

where T = h”/(c“ - id) is the time taken for a wave packet to travel from one 
crest to the next. Substituting from (2.4), (2.25) and (2.26), it is found that, to 

(2.34) the same order as (2.33),7 SEW = 4nPZ. 

The difference between SE and SEW must represent the net energy exchange by 
non-linear interaction between the long waves and the short ones over the time 
interval between the departure of a short-wave packet from one crest and its 
arrival at the next; thus 

6E, = SE-SE, = 6nI’k”a”E. (2.35) 

3. A physical interpretation 
These results can be given a simple physical interpretation in terms of the 

radiation stress discovered by Longuet-Higgins & Stewart (1960).  In the absence 
of short-wave growth, they showed that the short-wave energy density is a 
maximum, g(  1 + $Pa”),  at the long-wave crests and a minimum, E( 1 - $k”a”) 
at the troughs. As a short-wave packet leaves a long-wave crest, it  loses energy 
partly by the convection associated with the flow divergence in the long wave 
and partly (as they discovered) by losing energy to the long waves through work- 
ing against the radiation stress S, which in deep water is equal to half the short- 
wave energy density E. As the short waves move towards the next crest, they 
re-acquire the same amount of energy from the long wave, so that there is no net 
energy transfer from one component to the other. This is in accordance with a 
general result (Phillips 1960) that continuing energy transfer from one wave 
component to another cannot take place at second order. 

7 Surface pressure components associated with the second-order surface displacements 
give a fourth-order contribution to  SE,,. 
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However, if the short waves are growing under wind action, and losing energy 
at  the long-wave crests, the energy density at points where the short waves have 
just left a crest is less than the density at points symmetrically in front of the 
crest. Consequently, the energy transferred from the short waves behind a crest 
is less than the energy they acquire as they approach the next one, and over the 
cycle there is a net energy loss from the long waves and a gain to the short. 
However, in a steady state, this (together with the energy acquired from the 
wind) is lost to the wave motion when the short waves break, so that the net 
effect of the process is not an energy flux from one component to another, but 
a dissipation of energy from the long waves. 

This concept of the radiation stress can be used to provide a simple alternative 
derivation of the results of 0 2 .  The short-wave energy equation takes the form 

al3 i3 as - - _ _  - [E(C, + U ) ]  + u- + y d E ,  S t  SX ax 
where cg is the group velocity of the short waves, U the surface velocity induced 
by the long waves and S = +E the radiation stress. This expresses the rate of 
change of short-wave energy density in terms of the flow convection, the rate of 
working against the radiation stress and the rate of energy input from the wind. 
Since the motion is progressive with velocity cn, the operator a/i3x can be replaced 
by - (c")-l a/%, and the rate of energy transfer from the wind can, to sufficient 
accuracy, be replaced by its mean value y d g .  Further, the radiation stress term 
UaS/ax can be approximated by a(SU)/ax, so that equation ( 3 . 1 )  now becomes 

( 3 . 2 )  
- a -{E[c"-&cf -$U]}-yc"dE = 0,  

?t 
- 

whence 
where t = 0 marks the passage of a long-wave crest where 

E = E,  and U = U,, = k"a"c". 
After the passage of one long wave, t = 2rr/d', U = ri ,  again and E = E, + 6E. 

E(c" - +cf -$u) -E  0 (c" - +cf -$urn) = ycnvr,7jt, ( 3 . 3 )  

Thus 27rycftufE ~ ~ ~ _ _ _ _ ~ -  
&(CN - &' - q T  

2 %J 

= 4d%( 1 + 3kfiaii), (3 .4 )  
from (2 .27 )  and since k' $ k". This is in accord with (2 .33 ) .  

The interaction between the long waves and the short is represented by the 
term a ~ E U  

at (F) 
in (3 .2 ) .  The net energy transfer to the short waves over a cycle of the long ones 
is the integral of this, or SE, = $U,SE/C" 

= 6rrrI?kftarr, (3 .5)  
to the lowest order, using (3 .4 ) .  This provides a simple alternative derivation of 
the result (2 .35) .  
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The analysis of 9 2 can be extended readily to describe the interaction between 
two wave trains whose.directions of propagation are separated by an angle 8. 
It is found that the short-wave energy loss across the breaking zone at  the long- 
wave crests is given by 

SE = hrl?Z(l+ ($ cos2 8 + sin28) k"an}, (3.6) 

and that the net energy transfer from the long waves to the short ones over a 
cycle is &E, = 2i."i&"a"( 3 cos2 6' + 2 sin2 8)  

= 6nI"k"a"( 1 - 4 sin2 8),  (3.7) 

where r = F' 
k"(2c" - c' cos 6') ' 

the original definition (2.27) being clearly the special case 8 = 0. 

In  deep water the radiation stress tensor is simply 
These last two expressions can also be found by the methods of this section. 

so that only the component of the long-wave orbit velocity in the direction of 
short-wave propagation is involved in the radiation stress interaction. How- 
ever, the normal component convects the short-wave energy; and the energy 
equation corresponding to (3.1) takes the form 

where 

a aE a 
at ax 8Y 

[E(cg+$U)]--  E V + y d E ,  __ = 

U = k"a"c" sin x" cos 8, 
V = k"a"c" sin x" sin 8. 

(3.10) 

(3.11) 

sin8 ii - a case c? a _ = _ _ _ . -  - But 

and on substitution into (3.10) and integration over a cycle of the long wa.ves, 
the change in energy density at the long-wave crest is found to be 

ax c" c?t' ay C N  at' 

as in (3.6). The net energy loss from the long waves over a cycle is, in like manner, 
seen to be as given by (3.7). 

This mechanism of energy conversion to shorter waves and its subsequent 
loss has some similarities to the one involved in the generation of capillary waves 
ahead of a sharp crest of short-gravity waves. This latter effect, which has long 
been known,? was analysed recently by Longuet-Higgins (1963) who showed that 
the transfer of energy to capillaries at the sharp crest and its subsequent rapid 
dissipation represents a mechanism for energy loss from the gravity waves that 

But which has sometimes been believed to have something to do with the air flow 
near the sharp crests. 
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can be many times more effective than the direct viscous dissipation. In  the 
present problem, we have similarly an egergy transfer to a smaller-scale wave 
motion and its subsequent loss there. It seems likely that the capillary waves 
limit the growth of short-gravity waves on small ponds where this phenomenon 
is commonly observed, and perhaps also provides dissipation from the short- 
gravity wave components in the open sea. The mechanism discussed here in- 
volves the action of short wind-generated waves on longer ones, which need not 
be particularly steep. Its most direct application seems to be in the damping 
of swell by locally generated waves, and this is discussed in the next section. 

4. The attenuation of swell 
Every mariner knows that swell dies under an opposing wind; it is a part of 

the sea-faring folk lore. Even a sceptic must give some credence to a qualitative 
generalization like this, based as it is on intimate acquaintance and long observ- 
ation. Yet it has been difficult (for the present author, at any rate) to see how 
the direct action of the wind could produce an attenuation. The mechanisms that 
can account for the growth of waves under the influence of the wind do not work 
in reverse. They can provide energy to a wave travelling in the same direction 
as the wind but they cannot extract it from a wave moving against the wind. 
A kind of sheltering effect has been suggested, involving separation of the air 
flow in the lee of the swell, but this separation seems most implausible on physical 
grounds. However, the results of the previous sections do provide a way in which 
energy is extracted from the swell-indirectly though, through the intermediate 
action of the locally generated wind waves. 

Consider, then, a single component of swell passing through a region of shorter 
waves generated by a local wind. Near the crests of the swell, the wind waves 
will, as soon as they are sufficiently developed, lose energy by breaking or 
splashing, or developing capillaries. Some of this energy is acquired from the 
swell, the energy 6E, transferred per cycle per unit area from the swell and sub- 
sequently lost to the wave motion being given by (3.7).  The time taken for 
successive crests of the swell to overtake a group of the short waves is 

A"/(c" - 4c' cos 8). 
Thus if Es = &pgatt2 is the energy density of the swell, 

6E,(c" - &' cos 8 )  

= - ~ydE&''ccn( 1 - 8 sin2 8). 

5% - - __- -. 
at A" 

(4.1) 
Therefore the rate of decrease of the amplitude of the swell 

is constant as long as the short-wave breaking a t  the crests continues. Under 
steady conditions, the spatial attenuation is speciiied by 

da" 3 y d Z  
- - - (1-Qsin20), 
ax pc"3 (4.3) 

where C" = (g / lc )J-  is the phase velocity of the swell. 
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This linear attenuation of wave amplitude with distance (or time) is rather 
unusual, though the reasons for it are quite simple. The rate of energy loss from 
the swell results from its working against a given short-wave radiation stress, 
and so is proportional to its own orbital speed. The rate of energy loss is thus 
proportional to the wave amplitude, and the rate of decrease in amplitude 
constant. 

These results can be expressed alternatively by noting that ycr’E represents 
the mean rate of energy transfer per unit area from the wind to the short waves. 
Denoting this by E ,  we have 

and 3 E  (1-4sinz8). _ -  - -__ 
da” 
dx pcn3 (4 .5 )  

A simplification, which involves little loss in accuracy, is to neglect the small 
directional variation in the last factor of each of these expressions, so that we 
have simply 3E - - -__ 3s da” 

dt 2 p ~ ” ~ ’  dx pcn3* 
_ -  - 
da” 

It is noteworthy that these last expressions can be applied directly to the 
attenuation of swell by a whole spectrum of shorter wind-generated waves, where 
E is the total rate of energy transfer per unit area from wind to waves. Alternative 
expressions can be derived from (4.2) and ( 4 . 3 )  directly by integration over all 
wave-numbers or frequencies, but (4.6) is simpler and likely to be more accurate 
since it does not require evaluation of y as a function of wave-number from the 
stability theory and the subsequent integrations over the spectrum. The total 
energy transfer rate E can be estimated muchmore directly, a good approximation 
being given by 

6 = pat&& (4 .7 )  

where pa  is the air density, u* the friction velocity of the wind (so that the wind 
stress r = pa&) and c the phase velocity of the wind waves at  the spectral peak. 
This expression assumes that all the stress supplied by the wind appears initially 
as wave momentum, and is transferred to mean currents by wave breaking. 
Stewart (1961) suggests on empirical grounds that this is likely, and i t  can in fact 
be demonstrated theoretically using the results of Miles (1957)  that this is pro- 
bably so as soon as the mean square slope exceeds a very small value. With (4 .7 ) ,  
then, we have finally the attenuation rates given simply by 

3 ~ a  c 
dx pwc”3 , 
_ - _ _ _ _ _  - 
da” 

where, to avoid confusion, pu, denotes the water density. 
To give some indication of the rate of attenuation of swell in this way some 

numerical examples are illuminating. Consider swell passing through the trade 
winds, where the wind speed is about 20 knots, so that u* N 1 m/sec. If the local 
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sea has a characteristic period of order 3sec, c = 5m/sec. Then swell with a 
period of 20 see decreases in amplitude by attenuation about 50 cm/1000 km of 
travel, while a 15 sec wave decreases 1 m/1000 km. For a 7 see swell, (4.9) gives 
an attenuation of 10m/1000 km, though the accuracy of this last figure may not 
be high since the condition k‘ 

It is not yet possible to compare these attenuation rates with direct ob- 
servational evidence, though this may soon be possible. A remarkable series of 
observations by Munk, Miller, Snodgrass & Barber (1963) on low-frequency waves 
generated in Antarctic seas, propagating through the trade wind zones and in- 
cident on Southern California have suggested that waves with periods greater 
than about 15 see are attenuated only slightly (apart from the geometrical 
spreading) whereas those with periods less than this appear to be attenuated 
considerably. The energy losses seem to be consistent with those resulting from 
interactions of this kind in the region of the trade winds, though the wave spectra 
in the storm area were not measured but estimated using the observed wind field 
in the generating area and an empirical spectrum. 

k” is only weakly satisfied. 
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